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Time-to-death patterns in markers of age and
dependency

Tim Riffe, Pil H. Chung, Jeroen Spijker and John MacInnes∗

Abstract

We aim to determine the extent to which variables commonly used to describe health,
well-being, and disability in old age vary primarily as a function of years lived
(chronological age), years left (thanatological age), or as a function of both. We
analyze data from the U.S. Health and Retirement Study to estimate chronological
age and time-to-death patterns in 78 such variables. We describe results for the birth
cohort 1915–1919 in the final 12 years of life. Our results show that most of the
markers used to study well-being in old age vary along both the age and the time-
to-death dimensions, but that some markers are exclusively a function of either time
to death or chronological age, while other markers display different patterns in men
and women.

1 Background

For an individual, age across the life course consists of two components: time since
birth, or the chronological dimension of age; and time to death, or the thanatological
dimension of age. In the aggregate, thanatological age is determined by the mortality
rate schedule to which a birth cohort is subject until its extinction. Individuals do not
know their thanatological age with certainty. To estimate this age, an expectation of
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the lifespan1 is projected based on scenarios or extrapolations of how mortality rates
might change over time. Using this approach, data classified by chronological age,
like census population counts, can be reclassified into thanatological age (Brouard
1986).

Prospectively, decreasing mortality is equivalent to moving population into higher
thanatological ages, thereby increasing remaining life expectancy (Sanderson and
Scherbov 2005). In this case, the notion and the measure of future remaining
lifespan is elastic, and is thus subject to uncertainty. In retrospect (after the death of
a cohort), the thanatological age structure of a cohort at a given past point in time is a
fixed characteristic. Since a closed birth cohort is akin to a stationary population,2 it
may be tempting to assume that because the chronological and the thanatological
age structures are symmetrical in stationary populations (Brouard 1989, Vaupel
2009, Villavicencio and Riffe 2016), the patterns of demographic characteristics
within cohorts might demonstrate an analogous form of symmetry. This is not so;
even in the case of stationary populations or extinct cohorts, the age profiles of
other demographic characteristics in the population are decidedly different when
viewed chronologically versus thanatologically. If the demographic characteristics
in question are states, such as health states, it can be confirmed that for each cohort,
the mean duration spent in each state is indeed identical, regardless of whether age
is measured chronologically or thanatologically. The cohort expectancies are thus
immune to age classification biases. However, distinct patterns emerge in period
aggregates due to an interaction between lifespan variation and the age profiles of
demographic characteristics.

Some life transitions, states, and changes in state intensities are almost
exclusively a function of time to death. When we state that a characteristic is
a function of either age perspective we do not imply that age causes the given
characteristic to vary, but rather that a characteristic varies in some smooth, regular,
or parsimonious way over age. There are other instances in which chronological
age captures almost all pertinent variation. In cases in which a characteristic
strongly varies as a function of time to death, the common practice of aggregation
over chronological age may misrepresent time trends and misguide analyses about
change over time and expectations for the future. The measurement of the end-
of-life trajectories of characteristics is useful in such cases as a way of separating
mortality patterns from patterns in the characteristics themselves. Characteristic
measurements are taken while the respondent is alive, but as the thanatological age
at each observation is unknown until the date of death is known, it is retrospectively

1 Lifespan is used throughout as a synonym for chronological age at death, or thanatological age at

birth. These concepts are identical to the concept of length of life, which is not to be confused with life

expectancy, or the mean length of life.
2 The age structure of a birth cohort over time is proportional to the survivorship column of its life

table, which is proportional to the stable age structure determined by the Lotka–Euler renewal model

when the intrinsic growth rate is equal to zero.
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assigned. This final analytical step lends clarity to our understanding of how
characteristics vary within and between lifespans.

Incorporating a time-to-death perspective in demographic studies is especially
important when assessing the impact of “population aging.” To the extent that
the health, welfare, and social care demands of a population are functions of the
thanatological rather than the chronological age structure, forecasts of the social
and economic “costs” of aging that are based on chronological age profiles only are
prone to bias (Stearns and Norton 2004).

Research exploring time-to-death patterns has been done in other domains, and
the topics examined can be roughly categorized into two types: (1) phenomena that
are a function of apparent or perceived time to death (Hamermesh 1985, Hurd
and McGarry 1995, Carstensen 2006, Gan et al. 2004, Bı̀rò 2010, Salm 2010,
van Solinge and Henkens 2010, Cocco and Gomes 2012, Payne et al. 2013, Balia
2013), and (2) phenomena that are a function of actual time to death (Miller 2001,
Seshamani and Gray 2004, Werblow et al. 2007, Wolf et al. 2015, Stearns and
Norton 2004). Research in the first category consists mainly of studies on cognitive
transitions and economic or health behaviors, while research in the second category
consists mainly of studies on health expenditure, except Wolf et al. (2015), who
proposed a model to separate latent time-to-death trajectories of disability. A third
branch of research relates the perceived and actual remaining life time (Perozek
2008, Delavande and Rohwedder 2011, Post and Hanewald 2012, Kutlu-Koc and
Kalwij 2013). In this paper, we will expand the second group, focusing on a broad
range of questions from 10 waves of the U.S. Health and Retirement Study (RAND
2013, HRS 2013).

We aim to understand the end-of-life age patterns of various dimensions of
morbidity, as measured by a set of 78 characteristics and indices. To this end,
we score the degree to which these characteristics vary in terms of thanatological
age, chronological age, or both. In all, we define four different age and lifespan
pattern families, which we use to classify the end-of-life prevalence of each
characteristic tested. The pattern of variation exhibited by a given characteristic
ought to determine how we measure, understand, and respond to the characteristic.
We show that while in many cases chronological age ought to be used in conjunction
with thanatological age in classifying patterns, chronological age often provides no
information at all, and it may even obfuscate true temporal patterns.

Our analytical approach is retrospective rather than prospective, meaning that
no life table assumptions are made in the measurement of thanatological age,
and no censoring adjustments are necessary. Although more data are available for
earlier and later cohorts, we report results only for the cohort born from 1915 to
1919. In the following section, we describe the methods in greater detail. We then
demonstrate the four primary age patterns by way of example, and summarize all
of the characteristics tested in terms of these four patterns. Finally, we discuss some
implications and applications of this work.
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2 Data and methods

All of the findings reported in this paper are based on data from the U.S. Health
and Retirement Study (HRS).3 We use version M of the RAND edition of the data,
which is conveniently merged across all 10 waves available as of 2013. These data
are free to download, and all of the details of data processing and methods are made
freely available in an open code repository.4

We restrict the sample to individuals who were born between 1900 and 1930 and
who died between 1992 and 2011, which narrows the dataset to 37,051 interviews
of 9,238 individuals. Of these interviews, 8,137 are from the 1,919 individuals of
the 1915-1919 cohort who died. Observations from earlier and later cohorts are kept
for the sake of adding information when fitting models to the data.

Underpinning this investigation are a series of demographic surfaces indicating
the average prevalence of a given marker along chronological and thanatological
time axes within a series of quinquennial birth cohorts. However, we focus only on
the central 1915–1919 birth cohort. This visual tool is similar to but orthogonal to
the familiar Lexis surface. Figure 1 orients the reader by providing the temporal
coordinates we use. This diagram represents the various possible lifespans within
a given birth cohort, with an arbitrary final age, ω, of 110. One’s thanatological
age at birth is equal to one’s chronological age at death, such that both axes close
out with ω. Members of the birth cohort are born on the left side of the diagram, at
chronological age zero and with an unknown y coordinate (remaining lifetime) at the
time of birth. Lifelines advance downward and to the right, whereby the downward
direction indicates the approach to death, and the rightward direction represents
both the progression of calendar years and chronological age. The blue arrow (B)
indicates a hypothetical lifeline that will eventually expire at age 99, although this
property is unknown until death. The present study contains only complete lifelines,
such as that depicted in the color red (A) in Figure 1, which completes its lifespan at
age 71. In this diagram, diagonal lines represent death cohorts (or lifespan cohorts),
as opposed to the birth cohort diagonals found in the standard Lexis diagram.

We limit the current study to the 1915–1919 cohort due to the characteristics of
the data source. In the HRS, enough observations are available from the 1915–1919
cohort to allow us to measure the patterns within the area outlined in green (C)
in Figure 1. The left bound of this area is chronological age 72, and the diagonal
right bound belongs to the completed lifespan of 95. Since the HRS version used
spans 20 calendar years (1992–2011), the theoretical upper bound of observation of
thanatological age is 20. However, because relatively few individuals in this sample
are between thanatological ages 13 and 20 (i.e., individuals who entered the study

3 The Health and Retirement Study is sponsored by the National Institute on Aging (grant number

NIA U01AG009740) and is conducted by the University of Michigan.
4 This repository includes the R code used to process data, as well as to generate results and figures:

https://github.com/timriffe/ThanoEmpirical.
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Figure 1:
Chronological age and thanatological age over the life course of a birth cohort
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around 1992 and also died around 2011), we study only the thanatological ages that
are less than or equal to 12; ergo, the final 12 years of life. As further waves are
added to the HRS and the mortality linkage continues, the portion of the life course
that may be studied in this way will expand.

The 1915–1919 birth cohort was exposed to the 1918 Spanish influenza epidemic
as toddlers (1915–1917 cohorts), as infants (1917–1918 cohorts), and in-utero
(1919 cohort). As there is evidence that this exposure manifested itself in various
ways in later life (e.g., Almond 2006, Myrskylä et al. 2013), the reader may
rightly question whether the results presented here are anomalous. However, the
potential anomalous effects from this cohort are “smoothed-out” in our analysis,
due both to the breadth of the cohort and to the nature of the statistical method
we use to estimate aggregate patterns from individual observations. Specifically,
loess smoothing borrows information from observations in earlier and later cohorts.
Furthermore, we assume that at these ages other risk factors – some of which are
cumulative over the life course – and senescence itself likely drive health patterns to
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a much greater extent than early-life selection or late-life onsets of poor health due
to the Spanish influenza. We also verified that the patterns for this cohort are not
visually distinct from those found in earlier and later cohorts. More importantly, our
goal here is not to describe the end-of-life experience of this particular birth cohort,
but to add resolution to the measurement and description of aging and morbidity
indicators, and to contribute to the practice of demography in general.

Age Thanatological age is calculated for each individual as the lag between the
interview and the death dates expressed as decimal years. Chronological age is
calculated as the lag between the birth and the interview dates in decimal years.
Each individual is therefore assigned a chronological and thanatological age at each
interview, along with measures of our variables of interest. Since we are interested
in viewing characteristics over both chronological age and thanatological age
simultaneously, we require observations spread over a wide range of combinations
of thanatological and chronological age.

Version M of the RAND HRS dataset runs from 1992 to 2011, which means that
each birth cohort is observed over a different range of ages. For example, the 1925–
1929 cohort enters observation in 1992 at age 62 at the youngest, and achieves a
maximum completed age of 85 by the end of 2011. On the other end, the 1905–1909
enters the HRS in 1992 at age 82 at the youngest, and has a maximum completed
lifespan of 105 by the last wave in 2011, albeit with only a few observations at the
upper extreme. Results for these and other birth cohorts are also obtained from these
data, but portions of these surfaces are based on fewer data points (lifespans > 100)
or ages at which labor market exits appear to drive patterns at least as much as
senescence (ages < 67, approximately). We focus on the 1915–1919 cohort because
the observation window for this cohort is centered on the chronological ages at
which most deaths occur, and at which most recent mortality improvements in low-
mortality countries have occurred;5 and because the HRS provides a good density
and spread of data points over this window. The lower and upper age bounds vary
for questions not available in the first, second, or final waves.

Characteristics We aim for a broad overview of the age variation across different
dimensions of old-age disability and well-being. For this reason, we have selected
a wide variety of questions from the HRS data. These questions can be roughly
grouped into the following categories:

1. Activities of Daily Living (ADL): six items and two composite indices.
2. Instrumental Activities of Daily Living (IADL): seven items and two

composite indices.

5 Own calculations based on UN data (United Nations, Department of Economic and Social Affairs,

Population Division 2013). The modal ages at death for the 1915–1919 cohort are 80–81 for males and

around 87 for females. These calculations are based on partially observed cohort mortality rates, M(x)

(Human Mortality Database 2015).
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3. Health behaviors: five items.
4. Functional limitations: six items.
5. Chronic conditions: eight items and one composite index.
6. Cognitive function: 15 items and two composite indices.
7. Psychological well-being: nine items and one composite index.
8. Health care use: 14 items.

The specific variables included in our survey are found in the appendix tables
following the same numbering scheme as above. In all, we summarize results
from 78 individual and composite items. We exclude variables that were not asked
continuously from at least wave 3 through wave 9. Variables that were not available
in the first or second wave have left age bounds at ages higher than 72, whereas
items that were not asked in wave 10 have upper lifespan bounds that are below 95.

Each survey question must be in a format suitable for numeric operations. This
approach entails some compromises in data quality, since some coded responses are
less directly quantifiable, and our translation of categorical or ordinal responses to
numeric values was at times based on selected cut points. For example, respondents
were asked if they felt depressed. We assigned a value of zero to “no” answers and a
value of one to “yes” answers. As an example of ordinate recoding, self-reported
health had the possible responses “excellent,” “very good,” “good,” “fair,” and
“poor;” to which we assigned values of zero, zero, zero, one, and one, respectively.
Thus, for this kind of variable, population means can be interpreted as prevalences.

Variables with compact or bounded numeric responses were rescaled to range
from zero to one. Variables with no clear bounds or very large upper bounds, such
as body mass index or number of hospital visits, were not rescaled. These rescalings
are intended to simplify the visual interpretation of surfaces as a diagnostic, and
they do not alter the quantitative summary measures we use later. Some response
sets for particular questionnaire items changed between waves. In these cases, we
attempted to assign numerical codes that were consistent over the transition. These
recodes are imprecise, but they are good enough for the purposes of this study. In
other words, the surfaces we present are not exact measurements, but are meant to
provide impressions of how characteristics change over age.6

Weighting The population universe of the HRS and this study is the resident
population of the United States. Therefore, person weights are needed in order to
estimate population-level means. One difficulty that arises when using the HRS is
that the institutionalized population is treated as a second target population. In all
waves but 5 and 6, there are no person-weights assigned to individuals living in
institutions. We try to impute missing person-weights according to some simple
assumptions. If the individual was assigned a weight in a previous wave, we carry

6 The pre-processing of variables is full of details that would clutter this paper. Rather than providing

a lengthy and detailed appendix describing the case-by-case treatment of variables, we refer readers to

the annotated code in the open repository.
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this weight over as a constant, unless there was also a non-zero weight in a future
interview, in which case we assign the weight according to a within-individual
linear pattern. Individuals and interviews that still have missing person-weights after
this procedure are discarded from our study. Person-weights compensate for minor
detectable attrition in the HRS (Kapteyn et al. 2006), which for our purposes may
be considered unbiased.7

Loess smoothing Direct tabulations of the weighted data are legible if all of
the birth cohorts are combined, but doing this distorts the results due to cohort
composition bias. To overcome the birth cohort heterogeneity within surfaces,
we use birth cohorts as a third time dimension. As tabulations within this three-
dimensional space are noisy, we enhance surface legibility by using a non-
parametric local smoother. We specify a loess model of the given characteristic over
chronological age, thanatological age, and quinquennial birth cohorts using all of
the observations of since-deceased individuals from the 1900 through the 1934 birth
cohorts. We fit the model using the loess() function in base R (Cleveland et al. 1992,
R Core Team 2013)8 to the weighted individual-level data for each sex separately,
and then predict a surface for the 1915–1919 birth cohort within the study area
outlined in green (C) in Figure 1. Weighting is therefore explicit by person-weights,
and implicit by point density within the three temporal dimensions.9

3 Results

We first present examples of four surfaces that exemplify the major ways in which
characteristics tend to vary temporally over the lifespan within a birth cohort. These
four major patterns of variation provide a way to categorize and understand markers

7 Small biases in the survey only appear with respect to baseline characteristics that we do not

consider. Attrition due to health conditions, such as mental impairment, is mostly mitigated due to the

use of proxy respondents in such situations (Weir et al. 2011).
8 Using the fitted model, surfaces are produced using the related loess prediction function,

predict.loess(). The smoothing parameter, spar, is set to 0.7 for the results we present in the paper. All

of the results were also produced using smoothing parameters of .5 and .9, and we concluded that the

specific choice of smoothness does not drive results. In order to preserve year units, the three predictor

dimensions are not normalized.
9 Note that smoothing over these three particular time dimensions is not an overidentification. Within

a cohort, smoothing over thanatological age, chronological age, and completed lifespan would be an

overidentification, a problem that is similar to the familiar APC problem. The full set of lifespan indices

the demographer has to choose from are: birth cohort, death cohort, chronological age, thanatological

age, complete lifespan, and period. Within this set of six lifespan dimensions, some combinations

invoke overidentification, while others do not. For instance, it would be possible in this case to smooth

over years lived, years left, and period, but birth cohorts are the more meaningful category for this

study.
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Figure 2:
Examples of characteristics that vary along the thanatological and chronological age
axes
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(a) Psychological problems (ever) by years lived (x axis) and years left (y axis).
Males, 1915–1919 birth cohort.

(b) Back problems by years lived (x axis) and years left (y axis).
Females, 1915–1919 birth cohort.
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of aging. We summarize the results of our set of 78 characteristics by calculating
Pearson correlation coefficients for each of these four axes, and display the results
graphically, as well as in an appendix shaded table.
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Figure 3:
Psychological problems (ever) by chronological age only. Males, 1915–1919 birth
cohort. With 95% confidence bands from loess fit
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Four major surface axes In most situations, it is obvious to the eye whether
a variable operates over thanatological age or over chronological age. There are,
however, many instances in which both are at play, or the relationship is complex.
We first present surfaces representing psychological problems for men (Figure 2(a))
and back pain for women (Figure 2(b)). These two surfaces are examples of
thanatological and chronological characteristics, respectively.

From the direction of the contours on the surface in Figure 2(a), we conclude that
the chances of ever having been diagnosed with psychological problems increases
with the approach to death, and not with the advancing of chronological age, at
least in the window of observation studied here. However, since the risk of death
itself also increases according to an approximate exponential pattern at these same
ages, aggregating individual results by chronological age produces an increasing
pattern over age for this same characteristic (see Figure 3). In this case, the apparent
chronological age pattern is due to an interaction between the thanatological pattern
seen in Figure 2(a) and the age pattern of mortality itself. We argue that it is
imprecise to consider chronological age a risk factor for characteristics that display
such strong thanatological patterns, as an apparent chronological age pattern along
said margin is a deceptive artifact. Instead, such characteristics appear to operate
primarily as effects of the body shutting down, or possibly as a signal that, on
average, death is not far off. Thus, these characteristics represent a demographic
corroboration of substantive findings in the psychology literature (Carstensen 2006).
Ceteris paribum, mortality itself ought to be a good proxy for characteristics that are
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Figure 4:
Examples of characteristics that vary by lifespan only or by thanatological age within
the lifespan
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(a) Smoking (ever) by years lived (x axis) and years left (y axis). Females, 1915–1919 birth cohort.

(b) Blood pressure by years lived (x axis) and years left (y axis). Males, 1915–1919 birth cohort.
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highly thanatological. Some of the characteristics studied here display patterns that
are strongly thanatological.

Figure 2(b) tells the opposite story about back pain for women. Back pain
is a function of chronological age, at least at the population level, until around
chronological age 85. This is the dominant way of thinking about most aspects
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of the aging process. At these ages, back problems provide no information about
remaining years of life. Of the characteristics included in this study, only current
smoking, arthritis, and self-reports of current versus former memory exhibit such
clear chronological patterns (for both men and women).

There are other informative patterns among the set of characteristics studied.
These include characteristics that vary by lifespan, which display downward
diagonal contours in surface plots. Characteristics that vary by lifespan appear to
be constant within lifespans, and are often characteristics that determine lifespan.
Having ever smoked displays such a pattern, as seen in Figure 4(a) for women of
the 1915–1919 cohort. This pattern is also a corroboration of science and common
sense: smoking kills eventually (at least in this range of lifespans). Other variables
that display similar patterns in this window of the lifespan include lung disease
among men (this is largely redundant with the former), dental visits in the previous
two years among women, and diabetes among women. Sometimes such patterns
combine in complex ways that are worthy of further study.

The fourth major pattern of contour variation runs perpendicular to lifelines. One
characteristic that clearly displays this pattern is having ever been diagnosed with
high blood pressure among men. This characteristic varies by lifespan, and by
thanatological age within the lifespan for this window of study. In other words,
individuals with longer lifespans display later onset but greater eventual odds of
having been diagnosed with high blood pressure. Arithmetically, chronological
age – thanatological age is the operative predictor of blood pressure. For example,
for such characteristics, the condition of a 70-year-old with five remaining years
of life may resemble that of an 80-year-old with 15 remaining years of life. On
their own, such characteristics are not very useful for predicting eventual lifespan.10

Some characteristics appear to follow this pattern, albeit with contour lines at
angles less than 45◦, which may suggest that thanatological morbidity prevalence
is somehow proportional to length of life. We do not measure this possibility
explicitly.

Summary of the results for all characteristics We produce surfaces such as
those in Figures 2 and 4 for all 78 variables and each sex. We distill each of these
surfaces into four Pearson correlation coefficients, each of which is designed to
capture the variation along each of the four major patterns explained above. We
call the four patterns thanatological age (T), chronological age (A), lifespan (A + T)
(L), and mixed (A − T) (M). Most of the characteristics are well-summarized by
either one or two of these patterns. Figure 5 shows the correlation coefficients of all
78 variables binned into count histograms for each sex and major variation pattern
separately. This view is meant to provide an impression of how common each major
pattern of variation might be in commonly measured characteristics. This statistic

10 We do not have enough expertise to comment further on blood pressure, but instead only provide

an interpretation of the surface presented.



Tim Riffe et al. 241

Figure 5:
Distribution of correlation coefficients for each of the four major patterns of
variation, all 78 variables examined. L indicates lifespan variation (like Figure 4(a)),
A indicates chronological age (like Figure 2(b)), T indicates thanatological age (like
Figure 2(a)), and M indicates the mixed type variation (like Figure 4(b))
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only captures the rough direction of variation in characteristics, and does not capture
differences in levels or gradient steepness.

The first row of this panel shows that variation by lifespan is weak for most
variables, and strong for only a few variables (having ever smoked, and having
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visited a dentist for women). The second row shows that chronological age is
indeed an important aspect of variation for many, but not all characteristics (e.g.,
having ever been diagnosed with psychological problems); and that chronological
variation is often stronger among women than among men. The third row shows
that thanatological age is an important pattern of variation for many variables: the
lower tail is thinner than the tail of chronological age, and there are more cases
of strong correlations (r > 0.80) in the direction of thanatological variation than
of chronological variation. In the distributions over these variables, men tend to
show stronger thanatological age patterns than women, and women tend to show
stronger chronological age patterns than men. Finally, the most common pattern in
these data are for characteristics to vary strongly as chronological age increases and
as thanatological age decreases, M (especially for many ADLs, IADLs, functional
limitations, and many variables of cognitive function). For women, this is very
clearly the dominant pattern among the variables studied. For men, the pattern of
variation between characteristics is similar to that of thanatological age. In most
cases, for variables with strong patterns of variation in the M direction, there are
also strong correlations in the A and/or T directions. Of these, M is most commonly
paired with T. Characteristics that show strong correlations in both M and T display
surfaces with contour lines slanted less than 45◦. A more detailed table of the
correlation results by variable, pattern, and sex is given in the appendix.

4 Discussion

The distribution of the tested characteristics with respect to the four primary patterns
of variation is striking. Chronological age describes the prevalence patterns for
many conditions quite well, but the time-to-death patterns are more prevalent among
the measures tested. For measures that vary both with the increase in age and the
approach to death, the approach to death tends to be the stronger of the two measures.
Only a few characteristics vary by length of life, and their patterns are clear. The
upshot, as illustrated by comparing Figures 2(a) and 3, is that representing morbidity
or disability variables as chronological age patterns can in many or in most cases
be misleading as a model of morbidity prevalence, and be biased as a basis for
prediction.

These empirical findings must be tempered by noting that (1) the summary
measure (correlation coefficient) used here blends out some information, (2) these
results may not extrapolate to the set of all testable questions in the HRS, and (3) this
relationship does not necessarily hold in other windows of the lifespan or for other
birth cohorts. Comparable results for other five-year birth cohorts in the HRS (1905–
1925) are given in the manuscript repository.

Furthermore, the patterns presented here are valid for the whole population (of a
given sex) taken together, but if the target population was, for instance, broken down
by causes of death, the patterns may change. For example, imagine hypothetically
that the strong thanatological patterns shown in Figure 2 (psychological problems)
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were driven by strong patterns within individuals who eventually died of suicide,
but that other causes of death displayed entirely different patterns with respect to
psychological problems. Such cases are easily imaginable for other characteristics
and causes of death. At the time of this research, we did not have access to cause-
of-death information from the HRS mortality follow-up. For detailed investigations
of particular characteristics, cause-conditioning surfaces would clearly be useful
in disentangling morbidity processes, both for the purposes of understanding these
processes, and for making cause- and time-of-death predictions.

Research seeking to better document the multidimensional age variation of
particular characteristics would benefit from more empirical evidence and further
model development. Despite the limitations of this study, we have been able
to demonstrate the complex variety of age and lifespan dimensions over which
some key aspects of the aging process unfold. All of the indicators we tested are
commonly used to describe population aging, and very few of them are exclusively
a function of chronological age. If this finding is sustained in other cohorts and
populations, and if other indicators that were untested here are also shown to display
similar temporal complexity, we submit that the common discourse and debate on
the nature and impacts of aging would be better informed through the inclusion of
more judicious measurements and descriptions framed in terms of thanatological
as well as chronological age. This approach would contribute to the scientific
understanding of health and disability processes, and would improve the actuarial
accuracy of morbidity projections and of any policies that rely on accurate morbidity
projections.

The claim that accounting for time-to-death in predictions of health care
expenditure reduces bias has already been established in the health economics
literature (e.g., Stearns and Norton 2004). A common finding in health care
expenditure predictions is that in times of mortality improvements, predictions
based on chronological age patterns of health care expenditure (Sullivan-style
predictions (Sullivan 1971)) tend to overestimate total expenditure (e.g., Geue et al.
2014). Since the patterns of variation among the morbidity dimensions we study
are similar to those of health care expenditure over chronological age and time-to-
death, we here infer that Sullivan-style predictions of morbidity are biased in the
same direction.11 The consequences of overestimating future morbidity prevalence
are complex and varied, ranging from budget misallocations, to poor design of social
health care systems for the elderly, to lowered expectations regarding the benefits of
lengthening life.

We hope that the conceptual model of the life course presented here, which
complements the Lexis diagram, will be of use to demographers, public health
researchers, and epidemiologists. Other combinations of lifespan time dimensions
are also possible, and these would highlight different patterns in the data
(Riffe et al. 2017). Given the variety and the availability of such options – which

11 Other work in progress treats this point in greater detail (van Raalte and Riffe 2016).
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are perhaps now placed in starker relief – a more nuanced understanding of the
temporal accounting that relates demographic time perspectives is needed. Further
exploration and experimentation with these formal demographic concepts will lead
to the development of a more precise toolkit for demographic measurement and
the practice of demography, and, ultimately, to more astute contributions to the
discourse on population aging.

We suggest a selection of extensions to the exploration carried out here. The
present type of analysis must be replicated for more cohorts and populations. A few
countries with long-running and fully linked population registers already preside
over such information, and we encourage using such data to engage in a more
thorough exploration of the temporal richness of population change and population
characteristics. The administrators of large-scale panel studies may be motivated
to implement, increase, or improve the quality of mortality follow-up modules.
Information on the full age dimensions of health outcomes will be valuable. The
good news is that many unlinked panel studies may be retrospectively linked to
death registers.

If compared over calendar time, demographic work such as this will provide
a more precise answer to the question of morbidity compression. Given the
chronological-age ruse exemplified in the case of psychological problems (see
Figures 3 versus 2(a)), it is safe to say that unless retrospective thanatological
measurements of morbidity dimensions are undertaken, we will not have direct
information about the shape of the morbidity burden in the final years of life. Using
the techniques shown here, researchers may directly estimate the varieties of end-of-
life profiles often seen in the literature on morbidity compression (e.g., Fries et al.
2011).

There are also consequences for the popular understanding of aging. By using
analyses oriented toward the life course diagram, health care providers can better
situate the association of certain health outcomes within stages of the aging process.
This is both a question of the allocation of resources and a question of how
individuals conceive of themselves with respect to age. We therefore add to the
chorus of researchers working to change the measurement of age to reflect the
changing experience of age (see, e.g., Sanderson and Scherbov 2013).

The life course surfaces underlying this study highlight important sex differences
in the aggregate onset and the trajectory of some aspects of morbidity. Some of these
results may corroborate extant findings, such as results on the male-female health-
survival paradox, while others may provide us with a new understanding of sexual
dimorphism in morbidity. Specifically, it has been shown that women live longer,
but in worse health than men (e.g., Case and Paxson 2005), and that this pattern is
consistent with evidence indicating that health patterns vary chronologically more
among females than among males. In general, these methods and measurements
can be used to describe any between-group disparity in demographic or social
outcomes, especially those that directly or indirectly relate to remaining years of
life. Numerous other avenues of potential investigation may also be devised from
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the present work. It is our hope that these results are strongly suggestive, and help
to orient future investigation.
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Bı̀rò, A. 2010. Subjective mortality hazard shocks and the adjustment of consumption

expenditures. Journal of Population Economics 26: 1–30.

Brouard, N. 1986. Structure et dynamique des populations. la pyramide des anńees à vivre,
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Appendix: Variables and correlations

For the tables displayed in this appendix we use a shorthand to identify axis types.
T indicates the correlation coefficient along the thanatological age axis. A indicates
the chronological age axis. L indicates the lifespan axis (right-downward slanting
isolines), which is the least common in these data. M indicates the mixed axis, or the
upward-right slanting isolines, which is the most common type in these data. The
code used to generate these and all other results, including the results for all five-
year cohorts from 1905–1925 and different degrees of smoothing, is freely available
from the repository. The repository also contains a csv of these summary results.
https://github.com/timriffe/ThanoEmpirical.

Results are grouped by several major morbidity categories and presented in
heatmap tables. In these tables, darker shades of gray indicate higher correlations
(black = 1), and lighter shades of gray indicate low correlations (white = 0).
Numbers inside the cells indicate the rounded Pearson’s correlation coefficient ×
100, and can be interpreted as percents.
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Finally, it bears noting that these values say nothing about prevalence levels.
They are only intended to serve as rough gauges of the direction of variation in
characteristics.
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Table A.1:
Activities of Daily Living (ADL)

Short Description Females Males

L A T M L A T M

ADL3 ADL 3 point 25 80 80 96 9 67 84 89

ADL5 ADL 5 point 23 79 81 97 5 65 87 89

WALK
Difficulty walking

across room
16 73 83 93 6 53 86 80

DRESS Difficulty dressing 18 75 82 94 8 66 85 89

BATH
Difficulty bathing

or showering
17 73 81 94 7 59 83 82

EAT Difficulty eating 19 70 72 91 15 65 79 85

BED
Difficulty getting

in/out bed
14 71 82 93 8 59 80 80

TOILET
Difficulty using

toilet
31 81 73 94 0 51 81 78
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Table A.2:
Instrumental Activities of Daily Living (IADL)

Short Description Females Males

L A T M L A T M

IADL3 IADL 3 point 28 82 78 97 6 66 88 91

IADL5 IADL 5 point 14 74 87 96 7 68 89 92

WORK Health limits work 25 36 98 73 6 53 93 84

MAP
Difficulty using

maps
24 77 78 94 13 67 80 88

TEL
Difficulty using

telephone
33 83 68 96 20 75 78 95

MONEY
Difficulty

managing money
21 76 81 95 1 56 90 84

MEDS
Difficulty taking

medications
24 75 77 95 3 45 94 73

SHOP
Difficulty grocery

shopping
2 65 91 91 8 54 91 84

MEALS
Difficulty prep. hot

meals
20 76 82 95 6 60 88 85
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Table A.3:
Health behaviors

Short Description Females Males

L A T M L A T M

ALCEV
Alcohol,

ever-drinker
40 79 62 88 8 41 78 68

ALCDAYS
Drinking days /

week
10 48 77 72 18 40 77 67

ALCDRINKS
Nr drinks per

drinking day
28 84 75 96 18 49 89 80

SMOKEEV Ever-smoker 98 81 27 48 87 68 30 37

SMOKECUR Current-smoker 83 93 16 77 91 86 10 54

Table A.4:
Functional limitations

Short Description Females Males

L A T M L A T M

BMI Body mass index 34 79 72 93 4 54 91 83

BACK Back problems 56 91 43 82 79 92 17 74

MOB
Mobility difficulty

index
16 76 86 97 1 64 92 92

LGMUS
Large muscle

difficulty index
32 85 77 99 11 72 88 95

GROSSMOT
Gross motor

difficulty index
10 71 88 94 5 65 87 89

FINEMOT
Fine motor

difficulty index
22 78 81 96 14 70 81 90
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Table A.5:
Chronic conditions

Short Description Females Males

L A T M L A T M

CC
Number of chronic

conditions
34 82 77 98 7 53 95 84

BP
High blood

pressure, ever
14 67 84 89 37 84 75 98

DIAB Diabetes, ever 72 22 80 21 69 28 65 10

CANCER Cancer, ever 29 31 96 68 17 41 93 75

LUNG Lung disease 62 7 88 36 90 50 65 7

HEART
Heart problems,

ever
26 78 82 97 23 37 96 73

STROKE Stroke, ever 46 90 69 99 9 51 95 82

PSYCH
Psychological

problems, ever
33 77 69 88 24 37 96 72

ARTH Arthritis, ever 75 92 28 82 69 91 33 84
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Table A.6:
Cognitive function

Short Description Females Males

L A T M L A T M

SRM Self-rated memory 51 92 65 99 60 70 16 60

PASTMEM
Memory compared

to past
61 87 41 85 71 94 36 87

SS Serial 7s 1 64 92 91 7 48 60 65

C20B
Backwards

counting
35 81 66 90 30 79 72 93

NAMEMO Naming month 33 80 67 90 2 49 72 70

NAMEDMO
Naming day of

month
24 78 78 94 21 75 78 92

NAMEYR Naming year 44 88 64 95 19 74 80 93

NAMEDWK
Naming day of

week
16 72 80 91 20 70 73 86

NAMESCI Naming scissors 50 87 53 88 12 42 78 69

NAMECAC Naming cactus 39 86 68 95 56 86 45 84

NAMEPRES Naming president 17 74 82 93 59 3 81 37

NAMEVP
Naming vice

president
1 52 74 74 4 58 79 81

VOCAB Vocabulary score 40 10 67 42 51 13 85 53

TM
Mental status

summary
19 76 83 96 10 66 81 87

DWR
Delayed word

recall
4 59 87 85 19 71 82 92

TWR Total word recall 19 71 82 92 27 76 77 93

IWR
Delayed word

recall
33 80 76 96 35 80 71 93
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Table A.7:
Psychological well-being

Short Description Females Males

L A T M L A T M

CESD Depression score 44 19 91 58 22 43 95 78

SRH
Self-reported

health
42 14 90 53 29 33 98 70

DEPR Felt depressed 55 19 58 13 58 4 86 38

SLEEP Sleep restless 45 4 65 28 55 3 91 45

HAPPY Was happy 33 15 76 47 15 60 72 78

LONE Felt lonely 32 64 50 71 7 64 90 90

SAD Felt sad 69 39 47 7 22 35 91 69

GOING
Could not get

going
70 15 87 30 22 36 92 70

ENJOY Enjoyed life 13 40 85 70 42 85 67 95
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Table A.8:
Health care use (24 months)

Short Description Females Males

L A T M L A T M

HOSP Overnight hospital 26 73 75 90 11 60 77 81

HOSPSTAYS
Number hospital

stays
5 57 80 83 4 50 86 78

HOSPNIGHTS
Number nights in

hospitals
10 40 77 70 61 6 87 36

NH
Overnight stay in

nursing home
25 75 67 94 13 64 78 82

NHSTAYS
Nursing home

stays
26 76 67 94 10 57 77 78

NHNIGHTS
Number nights in

nursing homes
18 70 70 89 13 61 80 80

NHNOW
Nursing home at

interview
14 72 71 93 8 46 80 73

DOC Visited doctor 63 89 40 85 52 85 52 88

DOCVISITS
Number of doctor

visits
54 91 58 95 33 70 56 79

HHC Home health care 18 71 84 94 2 52 90 84

MEDS
Prescription drugs

regularly
22 40 90 73 23 41 92 75

SURG Outpatient surgery 32 11 31 7 30 17 18 3

DENT Visited dentist 84 33 75 14 27 11 55 35

SHF
Visited special

healthcare facility
35 87 75 99 12 71 87 94




